
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 3114–3140

www.elsevier.com/locate/jcp
A fixed-mesh method for incompressible flow–structure
systems with finite solid deformations

Hong Zhao a, Jonathan B. Freund a,b,*, Robert D. Moser c

a Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign,

1206 West Green Street, Urbana, IL 61801, United States
b Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory,

104 South Wright Street, Urbana, IL 61801, United States
c Department of Mechanical Engineering, Institute for Computational Engineering and Science, University of Texas at Austin,

1 University Station C2200, Austin, TX 78712, United States

Received 2 April 2007; received in revised form 5 November 2007; accepted 13 November 2007
Available online 23 November 2007
Abstract

A fixed-mesh algorithm is proposed for simulating flow–structure interactions such as those occurring in biological sys-
tems, in which both the fluid and solid are incompressible and the solid deformations are large. Several of the well-known
difficulties in simulating such flow–structure interactions are avoided by formulating a single set of equations of motion on
a fixed Eulerian mesh. The solid’s deformation is tracked to compute elastic stresses by an overlapping Lagrangian mesh.
In this way, the flow–structure interaction is formulated as a distributed body force and singular surface force acting on an
otherwise purely fluid system. These forces, which depend on the solid elastic stress distribution, are computed on the
Lagrangian mesh by a standard finite-element method and then transferred to the fixed Eulerian mesh, where the joint
momentum and continuity equations are solved by a finite-difference method. The constitutive model for the solid can
be quite general. For the force transfer, standard immersed-boundary and immersed-interface methods can be used and
are demonstrated. We have also developed and demonstrated a new projection method that unifies the transfer of the sur-
face and body forces in a way that exactly conserves momentum; the interface is still effectively sharp for this approach.
The spatial convergence of the method is observed to be between first- and second-order, as in most immersed-boundary
methods for membrane flows. The algorithm is demonstrated by the simulations of an advected elastic disk, a flexible leaf-
let in an oscillating flow, and a model of a swimming jellyfish.
� 2007 Elsevier Inc. All rights reserved.
1. Introduction

We propose a new algorithm to simulate the type of flow–structure interactions that often occur in biolog-
ical systems, such as in cardiovascular flow or swimming animals. Here, the deformations of the solid material
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.11.019

* Corresponding author. Address: Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign,
1206 West Green Street, Urbana, IL 61801, United States. Tel.: +1 217 244 7729.

E-mail addresses: hongzhao@uiuc.edu (H. Zhao), jbfreund@uiuc.edu (J.B. Freund), rmoser@mail.utexas.edu (R.D. Moser).

mailto:hongzhao@uiuc.edu
mailto:jbfreund@uiuc.edu
mailto:rmoser@mail.utexas.edu

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3115
are in general large and tightly coupled to the flowing fluid. The solid and fluid components are also typically
incompressible. This type of system is particularly challenging to simulate because the governing equations are
different in the two regions and the interface location must be solved for simultaneously with the dynamics in
both regions in a way that enforces both kinematic (no slip) and dynamic (stress matched) boundary condi-
tions at the interface. Incompressibility must also be enforced in both regions, which is a fundamentally dif-
ferent problem in each.

We have designed an algorithm that is accurate and efficient, and has provable properties despite the dif-
ficulties associated with these two distinct regions by formulating a unified equation of motion, in a straight-
forward way, that is nearly the same in the two regions. It is formulated in an Eulerian frame, as is more
common for simulating fluids, and it is discretized on a Cartesian mesh. The difference between the two
regions is in the stress formulation, which depends upon the reference configuration in the elastic solid. This
configuration is tracked with a separate Lagrangian mesh, which effectively overlays the Cartesian mesh. In
this formulation, the flow–structure interaction reduces to a singular surface force F and a body force B, which
are first computed on the Lagrangian mesh, and then transferred to the momentum equation solved on the
Eulerian mesh. For the momentum equation solver, we used a finite-difference fractional step algorithm
[26] that has been widely used for incompressible Newtonian fluid flows. Cartesian meshes are especially
attractive in this approach due to their simplicity, which leads to fast computation techniques such as approx-
imate factorization methods and fast Fourier transforms. The solid stresses are evaluated with a finite-element
method that imposes little restriction on the constitutive model for the solid. We demonstrate the method for
neo-Hookean solids.

Body-fitted moving meshes are another means of representing the solid and fluid regions separately, and the
matching between the two regions is straightforward if it occurs along mesh lines. However, for the large
deformations we seek to simulate, these meshes often need to be locally or globally regenerated to maintain
good mesh quality, which is usually computationally expensive and not always robust. Any interpolation from
the old mesh to the new one incurs extra computational cost and error [20,24]. Also, in standard body-fitted
mesh formations, the implementation of fluid–solid coupling is loose, meaning that there is no guarantee that
at the end of any particular time step both solvers predict precisely the same location of the interface. Standard
iteration schemes to resolve this are equivalent to a block Gauss–Seidel iteration, and so tend to be inefficient
and are not guaranteed to converge [15]. The fluid and solid motions can also be jointly solved, resulting in
better coupling. For example, in the context of the finite-element method, a joint velocity space can be defined
such that the velocity is continuous across the interface; a weak formulation can then be derived from a vir-
tual-work principle, thereby guaranteeing continuity of surface traction. This coupling algorithm was used by
Hu and coworkers in simulating particulate flows [19,20]. Such coupling algorithms are in general more dif-
ficult to design for non-body-fitted mesh methods because of the mismatch between the mesh and the inter-
face. One example is the distributed Lagrange multiplier (DLM) method proposed by Glowinski et al. [11],
which constrains the fluid and solid velocities to match. The DLM method was originally designed for simu-
lating particulate flows in which the solid particles are rigid [11,12], and it has been generalized to treat flow
interacting with a flexible body [54]. Other notable flow–structure interaction algorithms of the finite-element
type include the immersed finite-element method (IFEM) [33,52] and the material-point method [46,47], which
is discussed in more detail in Section 3.3.3.

Our formulation is similar in spirit to a class of finite-volume or finite-difference fixed-mesh algorithms for
simulation of fluid flow in complex geometries on fixed Cartesian meshes [4,7,48,49] but takes the important
step of including dynamically deforming solids. In this sense, it is more similar to Peskin’s immersed-boundary
method (IBM) [3,9,40,41,46] and LeVeque and Li’s immersed-interface method (IIM) [30,31]. In those meth-
ods, the fluid velocity and pressure are defined on a fixed Cartesian mesh, and the membrane is represented by
a set of Lagrangian points convected by the fluid velocity field. The membrane affects the surrounding fluid
flow field via a singular surface force, whose density is determined by the force balance on the membrane sur-
face. The governing equations of motion for the fluid on both sides of the membrane can thus be formulated as
a single Navier–Stokes equation supplemented by a surface force term. For our formulation, we show that the
singular component F of the solid’s stress on the fluid can be handled as in either of these methods, but we also
develop an accurate projection-based unified means of transferring both this singular component F and the
body force B to the Cartesian mesh in a way that exactly guarantees conservation of momentum. In our

3116 H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
formulation, the interface is not smeared beyond the neighboring mesh points as it is for the IBM, and at the
same time it avoids the challenge of taking derivatives of the local interface shape as needed for the IIM
approach. It does not match the formal order of accuracy that can be achieved with the IIM approach (with
considerable difficulty), but it has guaranteed conservation of momentum, maintains a sharp interface, and is
easier to implement, especially in three dimensions where the topological representation of the surface
becomes challenging for the IIM.

In the following, Section 2 sets up the details of the approach and the analytical formulation, and Section 3
provides the details of its numerical solution. The accuracy and convergence are assessed in Section 4, which
also provides more complex demonstrations of the method. Extensions and generalization are discussed along
with the summary of the method in Section 5.

2. Problem definition and methodology

We consider flow–structure interaction systems in which both the fluid and the solid are incompressible and
have the same density. This assumption is a good approximation for many biological systems in which the
solids are tissues with densities close to that of the surrounding fluid (usually mostly water), and are soft
but highly resistant to any local volume changes. For most of the analysis, we also assume that the solid
and fluid have the same viscosity—an assumption that simplifies the treatment of the traction boundary con-
dition at the interface. With this assumption, and in the flows of interest, the velocity gradient in the solid will
be smaller than that in the fluid, so the added viscous forces in the solid are negligible compared to the solid
elastic forces. Additional viscosity can be added to the solid in a straightforward way, which we discuss in
Section 5.

The geometric notation defining the flow–structure system is shown in Fig. 1. The computational domain X
is divided into distinct fluid Xf and solid Xs regions:
Xf ¼ X1
f [X2

f [� � � and Xs ¼ X1
s [X2

s [� � � ; ð1Þ

such that
Xs [Xf ¼ X; Xs \ Xf ¼ ;: ð2Þ

The solid and fluid are separated by an interface C ¼ C1 [C2 [� � �, whose normal n points from the solid into
the fluid.

The motion of both the fluid and the solid is governed by mass and momentum conservation equations,
which we choose to write in a generic Eulerian form,
ou

ot
þ u � ru ¼ �rp þr � s; ð3aÞ

r � u ¼ 0; ð3bÞ
where u is the velocity, p is the pressure, and s is the deviatoric stress tensor. In addition, the solid moves at
local velocity
Fig. 1. Notation for the system.

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3117
oxðX; tÞ
ot

¼ uðx; tÞ; ð4Þ
where x is the current coordinate of a solid material point and X is its coordinate at a reference state, which we
take to be stress-free. All physical quantities are non-dimensionalized by density and appropriate length and
velocity scales. The fluid and solid motions are coupled at their interface by the no-slip condition and the bal-
ance of surface traction:
sut ¼ 0; ð5aÞ
s� pnþ s � nt ¼ 0; ð5bÞ
where the notation sqt denotes a jump from solid to fluid across the interface,
sqt ¼ qjfluid � qjsolid: ð6Þ

The fluid is assumed to be Newtonian with viscous stress
sf ¼ lfðruþruT Þ; ð7Þ

where lf is the non-dimensional dynamic viscosity of fluid. The solid deviatoric stress has both elastic and vis-
cous components:
ss ¼ selas þ svisc; ð8Þ

where the viscous part svisc by our assumption has the same form as the fluid viscous stress (7). A neo-Hookean
elasticity model is used for the elastic stress,
selas ¼ lsðA � AT � IÞ; ð9Þ

where ls is the elastic constant and
A ¼ ox

oX
ð10Þ
is the deformation gradient tensor, but we shall see that our formulation for flow–structure coupling is inde-
pendent of the solid’s constitutive properties.

For our assumed incompressible Newtonian fluid, the momentum equation is, of course, the standard
Navier–Stokes equation (N–S),
Du

Dt
¼ �rp þ lfr2u: ð11Þ
In the solid, it is identical aside from an extra term r � selas,
Du

Dt
¼ �rp þ lfr2uþr � selas: ð12Þ
From the perspective of the momentum Eqs. (11) and (12), the term r � selas can be regarded as a body force
with support only in Xs. The elastic stress term in the jump condition (5b) can thus be moved to the right-hand
side to yield
s� pnþ lfðruþruT Þ � nt ¼ selas � n: ð13Þ

The right-hand side selas � n can be regarded as a surface force density acting on the surrounding fluid, which is
similar to that exerted by an elastic membrane. These observations suggest a combined momentum equation
for the entire system,
Du

Dt
¼ �rp þ lfr2uþ Bþ F; ð14Þ
where B is the body force of the form r � selas as in (12) and F is a surface force arising from (13). The body
force B has support in Xs,
Bðx; tÞ ¼ vsðx; tÞr � selas; ð15Þ

3118 H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
where vs is the characteristic function of Xs (i.e., it is 1 in Xs and 0 elsewhere). The surface force F arising from
(13) can be written as
Fðx; tÞ ¼
Z

C
f̂ðn; tÞdðx� rðn; tÞÞdaðnÞ; ð16Þ
where n is a coordinate parameterizing the interface C, rðn; tÞ is the interface position, and the surface force
density f̂ is
f̂ ¼ �selas � n: ð17Þ

The equivalence of the combined momentum Eq. (14) and the original momentum Eq. (3a) with jump condi-
tion (13) can be easily proved by integration by parts.

3. Numerical algorithm

The complete numerical scheme for solving the system described by (14), (3b) and (4) includes four main
components:

(1) A momentum equation solver for velocity and pressure on an Eulerian mesh.
(2) A means to compute forces B and F on the Lagrangian mesh.
(3) A means to transfer B and F to the Eulerian mesh.
(4) Movement of the Lagrangian mesh consistent with the solid’s incompressibility.

The following four sections discuss the methods and algorithms used and developed for each of these com-
ponents. The formulation is general, but is presented here in two space dimensions for simplicity. Section 3.5
ties them all into a unified time advancement scheme.

3.1. Eulerian-mesh momentum equation solver

For simplicity, here the computational domain X is a two-dimensional rectangle, and is discretized by a
uniform Cartesian mesh with mesh spacings hx and hy . The discrete velocity and pressure are staggered, as
shown in Fig. 2. In this formulation, the discrete divergence and gradient operators are exactly adjoint, mak-
ing the scheme inviscidly stable and non-dissipative for Navier–Stokes solutions [16,51]. The Cartesian mesh
facilitates the use of fast Fourier transforms to solve the discrete pressure Poisson equation. Mesh uniformity
is not a necessity: for example, local mesh refinement [34,44] could be included. When the domain boundary
oX is irregular, a curvilinear mesh can provide greater geometric flexibility, but a Cartesian mesh can also still
be used with Lagrange multipliers to enforce the boundary conditions on oX, which is embedded within the
mesh [25,48].

In the absence of solid, the governing equations of motion are the familiar incompressible Navier–Stokes
equations. The convection term, the viscous term, and the pressure gradient term are all discretized by stan-
dard central finite-differences on the staggered mesh as proposed by Kim and Moin [26] and summarized in
detail by Zhao [55]. The forces B and F, after being transferred to the Eulerian mesh, are discretized pointwise
at velocity mesh points, so they are straightforwardly added to the right-hand side of the discrete momentum
Fig. 2. Variable definition on the staggered Cartesian mesh.

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3119
equation. The discretized equations are integrated in time by a three-substep scheme [45]. Every substep, a
projection is employed to enforce the divergence-free constraint, as discussed in Section 3.5.

3.2. Computation of solid elastic stress

The solid deformation is tracked by a Lagrangian mesh, upon which the solid elastic stress is computed via
standard isoparametric finite-element interpolations. The Lagrangian mesh makes it easy to simulate periodic
and reversible solid deformations commonly occurring in biomechanics; it is, of course, less capable of han-
dling large plastic deformations and topological changes such as fractures, for which a purely Eulerian
approach [50] is more appropriate. The Lagrangian mesh points x that track the solid are each referenced
to fixed points X, and the deformation tensor A within each element e is computed as
A ¼ ox

oX
¼ ox

on

on

oX
¼ ox

on

oX

on

� ��1

¼
ox
on

ox
og

oy
on

oy
og

 !
oX
on

oX
og

oY
on

oY
og

 !�1

; ð18Þ
where n ¼ ðn; gÞ is the coordinate in a standard reference element. The derivatives with respect to (n,g) are
computed via isoparametric interpolation,
ox

on
¼
X

j

xe
j

oNe
jðn; gÞ
on

;
ox

og
¼
X

j

xe
j

oNe
jðn; gÞ
og

; ð19Þ
where xe
j is the coordinate of the jth vertex of element e, and N e

jðn; gÞ is the associated nodal shape function.
For incompressible solids, simple linear triangular (T3) or bilinear quadrilateral (Q4) elements are known to
lead to ill-conditioned stiffness matrices unless stabilized [21]. To avoid these so-called ‘‘locking” problems, we
use six-node quadratic triangular (T6) elements or nine-node quadratic quadrilateral (Q9) elements.

Since isoparametric interpolants are only C0-continuous on the global Lagrangian mesh, the computed A

and thus selas are discontinuous between neighboring elements. This in turn leads to force singularities in
r � selas, which cannot be directly transferred to the Cartesian mesh. Doing so would damage numerical accu-
racy, reducing its formal order, and potentially cause numerical instability. Instead, the Zienkiewicz–Zhu [57]
(ZZ) patch recovery method, which is a standard technique for computing stress field in finite-element meth-
ods, is used to rebuild a continuous selas field, as an approximation to the original elementwise discontinuous
selas. The density of the surface force F on C in (16) is then computed from the reconstructed selas and n. To
compute B in (15), the stress divergence r � selas is first computed in each element from the continuous selas

field, and the ZZ patch method is applied again to recover a continuous r � selas in Xs.

3.3. Transfer of the elastic stress

Though our unified formulation eases the task of coupling the fluid and solid, the transfer of B and F must
still be done consistently and accurately. There are two basic perspectives for undertaking this: we can attempt
to minimize the difference between the numerical force distributions on the two meshes, or we can attempt to
minimize local truncation errors in the final discretized momentum Eq. (14). Different force-distribution algo-
rithms can be designed from these two perspectives, and their properties such as accuracy and momentum con-
servation will vary, with the preferred approach probably depending upon the objectives of any particular
application. The ease of implementation, especially in three dimensions, is also an important issue. Three force
transfer methods are proposed in the following subsections: an immersed-boundary method as proposed for
membrane flows [40,41], an immersed-interface method, also as proposed for membrane flows [30,31], and a
new projection method. All three are successful, and their relative merits are discussed in Section 3.3.4.

3.3.1. Immersed-boundary method

In application of this approach, the surface force F is approximated by a smooth body-force distribution
with a narrow band of support around C [40,41]. Just as for membrane flows, we approximate the singular F

by its convolution with a smooth kernel function dh, for which we use a commonly selected form [28]:

3120 H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
dhðxÞ ¼ dhxðxÞdhy ðyÞ with dhðrÞ ¼
1
4h 1þ cos pr

2h

� �
jrj 6 2h;

0 jrjP 2h:

�
ð20Þ
The mollified force is then
Fhðx; tÞ ¼
Z

C
f̂ðs; tÞdhðx� rðs; tÞÞds; ð21Þ
where s is the arc length along the one-dimensional interface and f̂ is defined in (17). Fh is smooth and has
support in four Cartesian mesh cells around the interface. Its pointwise values are well defined and can be
straightforwardly computed at every velocity point on the Cartesian mesh.

The body force B is not part of the standard immersed-boundary formulations, but as computed by ZZ
patch recovery, it is continuous so its interpolation to the Cartesian mesh is straightforward. For a Cartesian
mesh point xa;b ¼ ðxa; ybÞ within a solid element e, the quadratic system
xa;b ¼
X

j

xe
jN

e
jðn; gÞ ð22Þ
can be solved for the reference element coordinate ðn; gÞ by Newton’s method. The body force B at xa;b is then
interpolated as
Ba;b ¼
X

j

Be
jN

e
jðn; gÞ: ð23Þ
3.3.2. Immersed-interface method

The immersed-interface method, as proposed for membranes [29,53], is formulated to minimize the trunca-
tion error of the discrete momentum equation at every Cartesian mesh point. Away from the interface, (14)
applies with F ¼ 0 and B ¼ 0 in the fluid. Within the solid, the body force B is again interpolated pointwise
as discussed in Section 3.3.1. The singular F is analogous to a membrane force on a fluid. To incorporate this,
the regular finite-difference stencils are modified to respect the interface jump conditions (5a) and (13). For
example, if p and its derivative px are discontinuous at xiþa (a > 1/2) with jumps
spt ¼ pðxþiþaÞ � pðx�iþaÞ; ð24aÞ
spxt ¼ pxðxþiþaÞ � pxðx�iþaÞ; ð24bÞ
then a consistent modified finite-difference stencil for ðpxÞiþ1
2

is
op
ox

� �
iþ1

2

¼ piþ1 � pi � spt

h
� ð1� aÞspxtþOðhÞ: ð25Þ
Arbitrary order finite-difference stencils are given by Xu and Wang [53].
For our fluid–structure solver, the jumps in u, p and their derivatives are needed to modify the finite-dif-

ference stencils, and they can be derived from (14) and (3b). In two dimensions, the fluid–solid interface C
is one-dimensional, so to achieve global second-order spatial accuracy, O(h) local truncation errors are
required for the modified finite-difference stencils that span C [30,36]. This requires jump conditions up
through second-order derivatives of velocity and first-order derivatives of pressure. Because of the moving
interface, the temporal derivatives are also discontinuous when C passes through an Eulerian mesh point, thus
a second-order accurate time integration requires jumps in time derivative as well as mixed space–time deriv-
atives through second order [32,53]. For now, our primary interest is the general investigation of fixed-mesh
algorithms, so the first order, easy-to-implement immerse-interface method by Lee and LeVeque [29] is
adopted in this study. Extension to higher order schemes is possible [53,56].

For our system, the jump conditions for velocity and pressure are [55]
spt ¼ f̂ n; s op
on

t ¼ of̂ t

os
þ sBnt; ð26aÞ

sut ¼ 0; lfs
ou

on
t ¼ �f̂ tt; ð26bÞ

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3121
where f̂ ¼ �selas � n is the surface force density (17) with tangential component f̂ t and normal component f̂ n,
and sBnt is the jump in the normal component of the body force (15)
sBnt ¼ B � njfluid � B � njsolid ¼ �ðr � selasÞ � n: ð27Þ

It is clear that f̂ t causes the discontinuity in velocity gradient while f̂ n leads to the jump in pressure. Following
Lee and Leveque [29], the tangential force f̂ tt is spread to the Cartesian mesh by the standard immersed-
boundary method as discussed in Section 3.3.1, while the f̂ nn part in the jump conditions is retained. Without
f̂ t, the jump conditions are simplified:
spt ¼ f̂ n; s op
on

t ¼ sBnt; ð28aÞ

sut ¼ 0; lfs
ou

on
t ¼ 0: ð28bÞ
The spreading of the tangential surface force smears the discontinuity in velocity gradient, so the velocity solu-
tion is formally first-order accurate in space, but in practice this nominally low order is unimportant, at least
for our demonstrations. The discontinuities in pressure and its gradient are, however, preserved. With rp
being the only term in (14) whose finite-difference stencils need to be modified, the numerical implementation
is relatively easy and is done exactly as in [29,55].

3.3.3. Force-projection method

This last approach adopts the central idea of the immersed-boundary method whereby the surface force is
approximated by a continuous body-force distribution, but as opposed to the immersed-boundary method dis-
cussed in Section 3.3.1, F and B are distributed in a single framework that exactly conserves momentum. We
also seek to avoid the convolution with ad hoc kernel functions like (20) and reduce smearing at the interface.

Given a continuous function q, a natural approximation to q is the piecewise bilinear interpolation based on
its values at points on a Cartesian mesh:
qðxÞ �
X

ij

wijðxÞqij; ð29Þ
where qij is the value of q at mesh point ði; jÞ and wij is the associated piecewise bilinear shape function. For a
point x ¼ ðx; yÞ located in a cell ½xi; yj� � ½xiþ1; yjþ1� with
x ¼ xi þ sxhx; y ¼ yj þ syhy ð0 6 sx; sy 6 1Þ; ð30Þ
the bilinear interpolation at x is
qðxÞ ¼ wi;jðxÞqi;j þ wiþ1;jðxÞqiþ1;j þ wiþ1;jþ1ðxÞqiþ1;jþ1 þ wi;jþ1ðxÞqi;jþ1; ð31Þ
where
wi;jðxÞ ¼ ð1� sxÞð1� syÞ; ð32aÞ
wiþ1;jðxÞ ¼ sxð1� syÞ; ð32bÞ
wiþ1;jþ1ðxÞ ¼ sxsy ; ð32cÞ
wi;jþ1ðxÞ ¼ ð1� sxÞsy : ð32dÞ
When the solid is completely submerged within the fluid so that oXs ¼ C, the body force B and the surface
force F can be combined as
Bþ F ¼ r � ðvsselasÞ; ð33Þ

which follows from the analysis in Section 2, with weak derivatives defined in the usual way [37], and an appli-
cation of Green’s theorem. Complete details are provided in [55]. Eq. (33) motivates the approximation
r � ðvsselasÞ �
X

ij

wijðxÞf ij; ð34Þ
where f ij is the distributed force at each Cartesian mesh point. The application of a standard Galerkin projec-
tion leads to

3122 H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
X
b

Z
X

wawb dxfb

� �
¼ �

Z
Xs

rwa � selas dx ð35Þ
for any Cartesian mesh point a. By lumping the stiffness matrix coefficients, f ij at any Cartesian mesh point can
be explicitly computed as
f ij ¼ �
1

hxhy

Z
Xs

rwij � selas dx: ð36Þ
This single, self-consistent formulation for B and F will give the combined formulation exact conservation of
momentum as shown in Section 3.3.4.

Because of the mismatch between the Cartesian mesh and the Lagrangian mesh, the numerical integration
ofrwij � selas in (36) requires special consideration. Each wij is piecewise bilinear on the Cartesian mesh, and its
gradient is discontinues across Cartesian mesh cells. On the other hand, selas is piecewise smooth on the
Lagrangian mesh. The integrand is thus in general not smooth in any Cartesian mesh cell or any Lagrangian
mesh element, so standard quadrature will not be accurate. An apparent solution is a collocation approxima-
tion that is similar to the scheme used by the material-point method [46,47]. We first divide every solid mesh
element e into subelements. The division is uniform on the reference element, as shown in Fig. 3. The stress
distribution within e can then be approximated by
selasðxÞ ¼
Z

e
selasðyÞdðx� yÞdy �

X
e0

selasðxe0 Þdðx� xe0 ÞAe0 ; ð37Þ
where xe0 is the collocation point within subelement e0, and Ae0 is the area of e0. Each xe0 is like a material point
upon which the elastic stress in e0 is concentrated. The integration in (36) over element e is simply
Z

e
rwij � selas dx �

X
e0
rwijðxe0 Þselasðxe0 ÞAe0 : ð38Þ
This collocation approach, although easy to implement, is shown to be unstable when used for load transfer in
aero-elasticity simulations [22]. Also, since the subelements are still not consistent with the Cartesian mesh
cells, the size of each subelement needs to be Oðh2Þ for the integration error in f ij to be O(h), where h is
the Cartesian mesh spacing. The computational cost thus would be prohibitively high to satisfy such a require-
ment. For our simulations, spatial oscillations in streamlines within the solid are observed when (38) is used.

We instead evaluate the integration (36) using a common refinement approach. Every Lagrangian mesh ele-
ment e is divided into subelements, every one of which is confined within one single Cartesian mesh cell. The
integrand of (36) is then smooth within every subelement upon which the integration is computed. Because of
the simple structure of the Cartesian mesh, the common refinement is done in an easier and faster way com-
pared to that for the general case [23]. We first divide the original element e into triangles as in the collocation
Fig. 3. Uniform subdivision of a Lagrangian mesh element in (a) reference coordinate space and (b) physical space.

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3123
method. If e is a triangular element, it is divided into 16 smaller triangles; if e is quadrilateral, it is divided into
32 triangles. We treat each sub-triangle as a linear triangle, and use the Cartesian mesh lines to cut through
this sub-triangle to form a collection of polygons whose sides are either parts of the sub-triangle’s boundary or
coincide with the Cartesian mesh lines, as shown in Fig. 4(a). The initial sub-triangle and any intermediate
polygon have straight edges, making it trivial to find their intersections with the Cartesian mesh lines, which
is the only operation needed that is tied to the geometry of the two meshes. Hence the common refinement
invokes minimal computational cost.

The number of edges of each polygon divided ranges between three and seven. The polygon could be fur-
ther tessellated into triangles and quadrilaterals upon which the standard numerical quadrature can be used to
compute the integral in (36). However, since linear approximation is used on every sub-triangle, the elastic
stress selas is also linear about x and y over every divided polygon. Likewise, because of the common refine-
ment, the gradient of wij is also linear in x and y on each polygon. The integrand rwij � selas is thus quadratic
within each polygon, with each component having the form

P
mnamnxmyn, where mþ n 6 2 and the coefficients

amn can be analytically computed. The integration of this polynomial over the interior of an arbitrary polygon
P can be converted to an integral along the edges of P by Green’s theorem [6],
Fig. 4
interse
integra
Z
P

X
mn

amnxmyn dxdy ¼
Z

P

X
mn

o

ox
amn

mþ 1
xmþ1yn

� �
dxdy ¼

Z
oP

X
mn

amn

mþ 1
xmþ1ynnx dl; ð39Þ
where nx is the x component of the boundary’s outward normal. Along an edge of the polygon, nx is constant,
and x and y are both linear functions of the edge length l. The integrand in the last integral of (39) is thus a
piecewise cubic function of l, and the integration on every edge can be exactly calculated by the two-point
Gauss quadrature rule, as in Fig. 4(b). The only numerical error introduced is the linear approximation made
to the intermediate sub-triangles. The interpolation is thus formally second-order accurate with Lagrangian
mesh size, but for well-resolved solid deformation, this error is negligible compared to the errors of other
numerical components. Compared to the collocation-point method, this common refinement approach retains
higher order of accuracy, is stable, and is still fairly easy to implement.

As formulated, the force-projection method (36) applies only when the solid is completely submerged such
that oXs ¼ C, but it can be easily generalized to cases where only part of the solid boundary is a fluid–solid
interface, while the other part might be, for example, a Dirichlet boundary. In that case, oXs is divided such
that oXs ¼ C [D, as shown in Fig. 5, which upon following the reasoning that leads to (33) yields
r � ðvsselasÞ ¼ Fþ Bþ FD; ð40Þ
. Common refinement between the triangle and Cartesian meshes: (a) the polygons generated by finding vertices j as the
ctions of the straight lines making up the two meshes; (b) d the quadrature points for exactly evaluating the force-projection
l (36) over one of the polygons.

Fig. 5. Division of a solid boundary into fluid–solid interface C and Dirichlet boundary D.

3124 H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
where FD is a surface force distribution on D defined in the same way as F,
FDðx; tÞ ¼
Z

D
f̂ðs; tÞdðx� rðs; tÞÞds; ð41Þ
with f̂ ¼ �selas � n as before. The force-projection formula (36) is then modified so that FD is excluded from
r � ðvsselasÞ, and
f ij ¼
1

hxhy
�
Z

Xs

rwij � selas dxþ
Z

D
wijselas � nds

� �
; ð42Þ
which can be evaluated as before.

3.3.4. Discussion on the three force-distribution approaches

In the previous sections, three strategies were proposed to transfer the solid elastic forces to the Cartesian
mesh. In both the immersed-boundary and force-projection methods, the original force distribution is approx-
imated by continuous body forces, which are directly added to the discrete Navier–Stokes momentum equa-
tion. On the other hand, the immersed-interface method uses those forces to modify the finite-difference
stencils near the interface to minimize local truncation errors. In this sense, the force distributions in the
immersed-boundary and force-projection methods are more like finite-volume approaches, while the
immersed-interface method is purely finite difference.

The different strategies affect the accuracy of the velocity and pressure solutions. The approximation of
replacing the surface force by a narrow-banded body force, as in the immersed-boundary and force-projection
methods, is made at the level of the governing equations. The width of the band is 4h for the immersed-bound-
ary method using the kernel function (20) and 2h for the force-projection method. The sharp jumps of velocity
and pressure are smeared to similar width, so the spatial accuracy in an L1 norm is first order at best. On the
other hand, the immersed-interface method incurs only local truncation error in the final discretized governing
equations, so the order of accuracy achievable, in principle, depends only on the highest order of spatial and
temporal derivatives whose jump conditions can be computed. The preserved sharp interface in the immersed-
interface method also results in higher (sub-grid) spatial resolution at the interface, which is especially impor-
tant when there are flow boundary layers at the interface.

There are, however, some difficulties with the immersed-interface method:

� High-order jump terms are sensitive to high wave number perturbations at the interface, and they also
make the method more susceptible to aliasing errors [10]. Therefore, filtering of quantities on C is often
needed. Filtering without adding excessive dissipation can be difficult for two-dimensional interfaces.
� To decouple the solution of the velocity and pressure, a split-step method is commonly used in time inte-

gration such as the one used here (see Section 3.5). The numerical pressure (or pressure increment) is typ-
ically solved by a Poisson equation, and is a first- or second-order time-accurate approximation to the
analytical pressure in a pure fluid system. On the other hand, the jump conditions are derived for the ana-
lytical pressure. The implications of this inconsistency do not appear to have been analyzed.
� For more general problems, the fluid and solid have mismatched densities and viscosities. In this case, the

jumps in velocity and pressure will not depend locally on the interfacial force density and geometry. Take a
membrane/Stokes-flow system as an example: when the fluids on the two sides of the membrane have

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3125
different viscosities, the discontinuity in velocity gradient can only be solved exactly from an implicit
boundary integral equation [42]. Any local jump condition is essentially an approximation to this, with con-
sequences that are difficult to assess.

Momentum conservation is another important issue. For a completely submerged solid body, the forces B

and F together should have zero contribution to the total linear momentum of the system. This can be seen from
Z
X
ðBþ FÞdx ¼

Z
Xs

r � selas dx�
Z

C
selas � n dS ¼ 0; ð43Þ
where we have used the Green’s theorem and the fact that C ¼ oXs. In order to discretely conserve linear
momentum, the forces transferred to the Cartesian mesh should have zero sum. However, the sequential com-
putation of selas andr � selas in the immersed-boundary and immersed-interface approaches does not guarantee
(43) in the presence of finite numerical errors, so the transferred force on the Cartesian mesh will not in general
conserve momentum. On the other hand, the force-projection formula (36) does conserve momentum indepen-
dently of the discretization’s details. This can be shown by summing f ij in (36) over the whole domain and
using the fact that

P
ijrwijðxÞ ¼ 0 for any x [55].

3.4. Solid tracking and the incompressibility constraint

Solid incompressibility requires that det A ¼ 1. For a material point, the local volume expansion det A

changes with time as
1

det A

D det A

Dt
¼ r � u; ð44Þ
so the incompressibility constraints defined in Eulerian and Lagrangian frames are, of course, analytically
compatible. In our projection method for the Eulerian solver (Section 3.1), the velocity is constructed to be
divergence free, but this compatibility is disrupted when the velocities are numerically interpolated from
the Cartesian mesh to move the solid. Since the solid constitutive law does not have any resistance to local
volume changes, no feedback is provided to suppress this deviation as it inevitably occurs. Without any special
treatment, we observe that k det A� 1k does indeed increase slowly with time, eventually leading to
instabilities.

Artificial compressibility offers a crude means of correcting this, but restricts the time step by introducing
fast compressive modes. Ideally, the solid incompressibility should be enforced as a constraint by a pressure-
like Lagrange multiplier in Xs [21]. The role of this constraint is functionally redundant with the global pres-
sure field already determined from the velocity divergence-free constraint, so it should only be required to
make small corrections at each time step and can therefore be implemented simply as follows. During every
time step, the Lagrangian mesh points are first moved without constraints at the interpolated velocities. We
then seek a correction g such that
1 ¼ det
oðxþ gÞ

oX
: ð45Þ
The anticipated smallness of g suggests the linear approximation
1 � det Aþ o det A

oAij

ogi

oX j
¼ det Aþ det AA�1

ji

ogi

oX j
: ð46Þ
Since
A�1
ji

ogi

oX j
¼ oX j

oxi

ogi

oX j
¼ ogi

oxi
; ð47Þ
g can be regarded as a function of the current solid coordinates that satisfies
ogi

oxi
� det A�1 þ 1 ¼ 0: ð48Þ

3126 H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
This specifies a manifold of all admissible g’s, from which we seek the one with the smallest L2-norm. This
constrained minimization problem is solved approximately (but accurately for our applications) by a penalty
method. This amounts to minimizing the functional
I ¼
X

a

jgaj
2

2Aa
þ
X

e

1

2Ae

Z
e
ðr � g� det A�1 þ 1Þ2 dx; ð49Þ
where a is the mesh point index, Aa is the sum of the area of all mesh elements surrounding point a, e is the
mesh element index, and Ae is the area of e. The elementwise integrations are scaled by the mesh element area,
so no mesh dependent penalty parameters are needed. The term g is interpolated isoparametrically, and when
discretized, I is quadratic in the nodal values of g:
I ¼
X

a

jgaj
2

2Aa
þ
X

e

1

2Ae

Z
e

X
l

rNe
l � ge

l � det A�1 þ 1

 !2

dx; ð50Þ
where l is the local nodal index within element e. Taking the derivative of I with respect to every ga results in a
symmetric positive-definite linear system that requires
ga

Aa
þ
X

e

1

Ae

Z
e

X
l

rN aðrNe
l � ge

lÞdx ¼
X

e

1

Ae

Z
e
rN aðdet A�1 � 1Þdx ð51Þ
for every a. This linear system is solved for the g’s by a standard conjugate-gradient algorithm.

3.5. Time integration

The full system is integrated in time with a hybrid third-order Runge–Kutta/Crank–Nicolson scheme,
which is implicit in the viscous term [45] and uses a projection method to compute p to enforce r � u ¼ 0.
To simplify notation, we define
Rf � u � ru�rp þ lfr2u ð52Þ

and let S � Fþ B be the total elastic force.

To decouple the solution of velocity, pressure and solid displacement, in each substep j of the time scheme,
we first update the solid Lagrangian mesh, then compute S from the updated solid displacements, and finally
solve the velocity and pressure:
xðjþ1Þ � xðjÞ

Dt
¼ cjþ1uðjÞðxðjÞÞ þ fju

ðj�1Þðxðj�1ÞÞ; ð53aÞ

~uðjþ1Þ � uðjÞ

Dt
¼ R

ðjþ1Þ
f þ ðajþ1SðjÞ þ bjþ1Sðjþ1ÞÞ; ð53bÞ
where
R
ðjþ1Þ
f ¼ �ðcjþ1uðjÞ � ruðjÞ þ fju

ðj�1Þ � ruðj�1ÞÞ � ðajþ1 þ bjþ1ÞrpðjÞ þ ðajþ1r2uðjÞ þ bjþ1r2~uðjþ1ÞÞ; ð53cÞ
r2/ ¼ r � ~uðjþ1Þ; ð53dÞ
uðjþ1Þ ¼ ~uðjþ1Þ � r/; ð53eÞ

pðjþ1Þ ¼ pðjÞ þ /
ðajþ1 þ bjþ1ÞDt

: ð53fÞ
Here, j ¼ 0; 1; 2, so qð0Þ ¼ qn indicates a quantity at the beginning of a time step, and qð3Þ ¼ qnþ1 at the time
step’s end, with the exception of xð3Þ which must be corrected for solid incompressibility to yield
xnþ1 ¼ xð3Þ þ gðxð3ÞÞ. The parameters used in (53) are [45]

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3127
c1 ¼
8

15
; c2 ¼

5

12
; c3 ¼

3

4
; ð54aÞ

f0 ¼ 0; f1 ¼ �
17

60
; f2 ¼ �

5

12
; ð54bÞ

a1 ¼
29

96
; a2 ¼ �

3

40
; a3 ¼

1

6
; ð54cÞ

b1 ¼
37

160
; b2 ¼

5

24
; b3 ¼

1

6
: ð54dÞ
A Courant stability limit for the convection and solid elastic force terms restricts the time step. There are two
propagation velocities that must be considered: the convection velocity and the elastic wave speed

ffiffiffiffiffiffiffiffiffiffi
ls=q

p
. To

estimate the maximum stable time step, a composite Courant stability constraint is defined
CFL ¼ Dt max
juj
hx
þ jvj

hy
þ kc

hs

ffiffiffiffiffi
~ls

q

s !
6

ffiffiffi
3
p

; ð55Þ
where ~ls is zero in the fluid and has value ls in the solid, hs is the grid parameter describing the Lagrangian
grid size and is defined as the smallest side length of all mesh elements, and the

ffiffiffi
3
p

limit arises from the sta-
bility bound of the third-order Runge–Kutta scheme. The coefficient kc ¼ 3:0 is an empirically estimated coef-
ficient for the wave speeds on the unstructured mesh. It was selected by considering the modulus of the
maximum eigenvalues of the stiffness matrix, linearized about the undeformed solid configuration, for a num-
ber of solid grids and geometries, and requiring that kc=hs

ffiffiffiffiffiffiffiffiffiffi
ls=q

p
be at least 50% larger than the observed

eigenvalues [55]. This estimate of maximum stable time step is consistent with our experience with numerical
tests.
4. Numerical results

4.1. Convergence

The order of accuracy of the combined scheme can be estimated by considering its components. The ZZ
patch recovery method for computing the elastic stress is third-order accurate with respect to the Lagrangian
mesh element size, and the finite differences on the Cartesian mesh are second-order accurate with respect to
the Cartesian mesh spacing. However, the accuracy is reduced for a fluid–solid system since the elastic force F

in (14) from the Lagrangian mesh is spread to nearby Cartesian mesh points, which is well known to yield a
velocity solution that is at most first-order accurate in an L1 norm [27]. This loss of accuracy also occurs for
the immersed-interface approach because of the diffusion of the tangential component of F. The time integra-
tion scheme in Section 3.5 is formally second-order accurate, but only for solutions smooth in time. When the
fluid–solid interface passes a Cartesian mesh point, the time derivatives of the velocity and pressure at this
point are also discontinuous. Without any correction to account for this temporal non-smoothness, the tem-
poral accuracy is also formally of first order in L1 [32,53].

Two model systems are simulated to confirm the accuracy of the method. We first consider the motion of a
viscoelastic solid without a fluid–solid interface in Section 4.1.1 and then two fluid–solid interaction systems in
Sections 4.1.2 and 4.1.3. For every system simulated, the convergence with respect to the solid Lagrangian
mesh element size and the Cartesian mesh spacing are evaluated separately. Unless specified, the transfer of
the elastic forces is by the new force-projection formula (36).

4.1.1. A pure solid system

The simulation of the motion of a pure solid exercises all the components of the scheme except the fluid–
solid interface, which is more challenging to analyze. The solid is initially stress free, and occupies a square
domain ½�0:5; 0:5� � ½�0:5; 0:5�. It is then deformed by a velocity field with stream function
wðx; tÞ ¼ w0 sinðxtÞ sinðkxxÞ sinðkyyÞ; ð56Þ

3128 H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
where /0 ¼ 0:25, x ¼ 2p and kx ¼ ky ¼ 2p. The viscosity and the elastic constant are lf ¼ 0:1 and ls ¼ 1. The
solid deformation at t ¼ 0:5 is shown in Fig. 6.

The algorithm is then tested by applying the external body force bex that would generate the target velocity
field in the numerical solution. It is
bex ¼
ou

ot
þ u � ru� lfr2u�r � selas; ð57Þ
where the pressure has been set to be zero. All right-hand side terms in (57) that depend upon u can be eval-
uated analytically. To compute r � selas, the initial position X for every Cartesian mesh point is found by inte-
grating (4) backward in time using a fourth-order Runge–Kutta scheme. The time step is chosen such that
halving the time step changes the computed X by less than 1 part in 106. The inverse deformation tensor
A�1, which gives selas and r � selas, are computed with Fourier methods.

For these tests, the undeformed solid is divided into uniform square elements. The errors in the calculated
velocity and solid displacement are computed at t ¼ 0:5. For the finest mesh, changing the time step from
1/1024 to 1/2048 changes the error by less than 1%, so the temporal error is negligible compared to the spatial
errors we are assessing.

Convergence with Lagrangian mesh refinement is shown in Fig. 7, where a 512� 512 Cartesian mesh is
used, and the number of the Lagrangian mesh elements, N s, increases from 4� 4 to 64� 64. Every
Lagrangian mesh element has relaxed side length hs ¼ N

�1
2

s . The error in the velocity and solid displacement
in all three norms shown (L1, L2 and L1) decreases as Oðh3

s Þ until N s exceeds 32� 32, after which point the
error introduced by the ZZ patch recovery is comparable with the Cartesian-mesh Navier–Stokes solver.
Convergence with respect to the Cartesian mesh spacing h is shown in Fig. 8, where the Lagrangian mesh
is 64� 64, and the Cartesian mesh is refined from 4� 4 to 256� 256. The error in velocity decreases as
Oðh2Þ in all norms; the error in solid displacement decreases as Oðh2Þ in the L1 norm, and at a slightly
slower rate Oðh1:9Þ in the L1 and L2 norms. Possible reasons for this slight anomaly are discussed in Section
4.1.4.

In summary, the elastic stress computed on the Lagrangian mesh is confirmed to be third-order accurate
with respect to the Lagrangian mesh element size; in the absence of the fluid–solid interface, the elastic force
transferred to the Cartesian mesh is second-order accurate with respect to the Cartesian mesh spacing.

4.1.2. The deformation of an elastic wall by flow

In this test, we simulate the deformation of a soft wall by fluid flow, in a lid-driven cavity flow as reported
by Dunne [8]. The cavity is 2 by 2, with bottom 0.5 occupied by a neo-Hookean wall and the upper part filled
with fluid. The velocities are zero at all cavity boundaries except the top lid, where the x component of the
velocity is
-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Fig. 6. The deformed solid mesh in the solid-only convergence test.

1

3

0.1 0.2 0.3
10-5

10-4

10-3

10-2

10-1

1

3

0.1 0.2 0.3
10-6

10-5

10-4

10-3

10-2

10-1

Fig. 7. Pure solid system: convergence with the Lagrangian mesh element size. The underlying Cartesian mesh has 512� 512 mesh cells.
Plotted is the norm of the numerical error e: s L1, M L2, and h L1.

1

2

10-3 10-2 10-1

10-5

10-4

10-3

10-2

10-1

1

2

10-3 10-2 10-1
10-6

10-5

10-4

10-3

10-2

Fig. 8. Pure solid system: convergence with the Cartesian mesh spacing. The solid Lagrangian mesh has 64� 64 elements. Plotted is the
norm of the numerical error e: s L1, M L2, and h L1.

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3129
u ¼ 0:5

sin2ðpx=0:6Þ; x 2 ½0:0; 0:3�;
1; x 2 ð0:3; 1:7Þ;
sin2ðpðx� 2:0Þ=0:6Þ x 2 ½1:7; 2:0�:

8><
>: ð58Þ
The fluid viscosity is lf ¼ 0:2, and the solid has ls ¼ 0:2. The convection term in the Navier–Stokes equation
is omitted as in [8]. The cavity is discretized by a uniform 256� 256 Cartesian mesh, and the elastic wall by a
16� 4 quadrilateral mesh. The simulation runs until kuk1 < 10�4 in Xs, when the system is considered to have
reached a steady sate. The wall deformation and the streamlines are shown in Fig. 9 to compare well with

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Fig. 9. The steady state of the deformation of an elastic wall driven by flow. The j shows the interface position of Dunne [8]. The solid
mesh is shown both for the present force-projection method — and an Arbitrary Lagrangian–Eulerian method - - -.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 10. The deformation of an elastic wall driven by flow at time t ¼ 1.

3130 H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
those reported by Dunne [8]. Also shown in Fig. 9 is a solution obtained via an Arbitrary Lagrangian–Eule-
rian method [17].

A similar configuration as shown in Fig. 10(a) is used to demonstrate convergence. The computational
domain is a ½0; 1� � ½0; 1� square, the lower half of which is solid and the upper half fluid. The solid has zero
moving velocity at y ¼ 0, and the fluid at y ¼ 1 has time-periodic impinging velocity
u ¼ 0; v ¼ �ð1� cosð2ptÞÞ sinð2pxÞ: ð59Þ

Periodic boundary conditions are specified at the left and right boundaries. The material constants are
lf ¼ 10�2 and ls ¼ 0:25. A visualization of the velocity field and wall deformation at t ¼ 1:0 is shown in
Fig. 10(b).

The undeformed wall is discretized by uniform square elements. The time step is 1/2048. The calculated
velocity and solid displacement at t ¼ 1:5 are compared to an accurate solution with a 64� 32 Lagrangian
mesh and a 512� 512 Cartesian mesh to estimate error. The convergence with the Lagrangian mesh element
size is shown in Fig. 11. The error in the velocity is Oðh2

s Þ in an L1 norm, and Oðh3
s Þ in L1 and L2 norms; the

error in the solid displacement is between Oðh2:5
s Þ and Oðh3

s Þ in all three norms. The convergence with the
Cartesian mesh spacing is shown in Fig. 12. The velocity converges approximately as Oðh1:3Þ in L1 norm,

0.05 0.1 0.15 0.2 0.25

10-4

10-3

10-2

10-1

0.05 0.1 0.15 0.2 0.25

10-5

10-4

10-3

10-2

Fig. 11. The deformation of an elastic wall by flow: convergence with the solid Lagrangian mesh element size. The underlying Cartesian
mesh has 512� 512 cells. Plotted is the norm of the numerical error e: s L1, M L2, h L1, - - - the second-order convergence line, and –-–
the third-order convergence line.

0.02 0.04 0.06

10-4

10-3

10-2

10-1

0.03 0.06 0.09

10-4

10-3

10-2

Fig. 12. The deformation of an elastic wall by flow: convergence with Cartesian mesh spacing. The solid Lagrangian mesh has 64� 32
elements. Plotted is the norm of the numerical error e: s L1, M L2, h L1, - - - the first-order convergence line, and –-– the second-order
convergence line.

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3131
and Oðh1:7Þ in L1 and L2 norms, and the solid displacement converges as Oðh1:7Þ in all three norms. The L1
velocity error is about 10 times the L1 and L2 error norms, which is in contrast to the pure solid system in Sec-
tion 4.1.1, where this ratio is less than 3.

Fig. 13 shows that the pressure along a vertical line x ¼ 0:25 at time t ¼ 0:75 agrees well away from the
interface for all three force transfer method. The immersed-interface method, as expected, captures the pres-
sure jump at the interface near y ¼ 0:44 within one mesh spacing. In contrast, the immersed-boundary method

-1 -0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

0.1 0.15 0.2 0.25 0.3

0.4

0.45

0.5

Fig. 13. Elastic wall deformed by flow: pressure on x ¼ 0:25. In (a), the immersed-boundary - - -, the immersed-interface —, and the force-
projection –-– results are indistinguishable. In (b), h the immersed-boundary result, M the immersed-interface result, and s the force-
projection result.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 14. Oscillating disk in fluid: streamlines and solid shape.

3132 H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
smears the pressure jump over three mesh spacings. The new force-projection method also appears to capture
the jump within one mesh spacing.

4.1.3. An oscillating disk surrounded by fluid

This example considers a neutrally buoyant oscillating disk in a fluid. The computational domain is peri-
odic with 0 6 x 6 1 and 0 6 y 6 1. The disk is initially stress free, and its undeformed shape is a circle with
radius r ¼ 0:2. At t ¼ 0, the system is subjected to a velocity field with stream function
w ¼ w0 sinðkxxÞ sinðkyyÞ; ð60Þ

where w0 ¼ 5� 10�2 and kx ¼ ky ¼ 2p. The viscosity and the elastic constant are lf ¼ 10�3 and ls ¼ 1:0.

The system evolves like a damped oscillator, with streamlines and the solid deformation as shown in
Fig. 14. In these images, the discontinuity of the velocity gradient at the fluid–solid interface is indicated
by the abrupt changes in the streamline direction across it. The mesh convergence for this system is similar
to the elastic wall case in Section 4.1.2.

One of the attractive features of the Cartesian-mesh momentum equation solver used is its discrete energy
conservations for pure fluid systems. The combined flow–structure interaction solver, however, is not expected
to exactly inherit this property. We estimate its energy conservation as follows. The kinetic energy of the whole
system is computed on the Cartesian mesh as

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3133
Ek ¼
1

2

Z
X
juðxÞj2dx � hxhy

2

X
ij

ðu2
i;jþ1

2
þ v2

iþ1
2;j
Þ: ð61Þ
Likewise, the strain energy of the incompressible neo-Hookean solid is
Ep ¼
Z

X

ls

2
ðtrðAT � AÞ � 2Þdx; ð62Þ
where the deformation tensor A is computed elementwise through isoparametric interpolation. The total
mechanical energy E ¼ Ek þ Ep is dissipated by viscosity at a rate
_Edisp ¼
Z

X
lf jruj2 dx; ð63Þ
which is computed numerically as the sum of jruj2 at all Cartesian mesh points.
Analytically, the sum of the mechanical energy and the total dissipated energy,
EtðtÞ ¼ EkðtÞ þ EpðtÞ þ
Z t

0

_EdispðsÞds ð64Þ
should be constant. Fig. 15 shows the numerical energy balance history in one simulation, in which a 169-ele-
ment Lagrangian mesh and a 128� 128 Cartesian mesh are used. The computed EtðtÞ varies by 1.2% over
these oscillations as t goes from 0 to 1. The maximum variations in Et for all simulations in this convergence
test are tabulated in Table 1. Those variations are generally consistent with solution errors, so in general, sim-
ulations with higher spatial resolutions conserve Et better.

4.1.4. Discussion of errors due to surface force spreading

The convergence test in Section 4.1.2 shows a somewhat anomalous mesh convergence rate, which has been
observed in similar systems by others [30,44]. For similar uniform mesh approaches to solve irregular domain
Poisson equations using surface source singularities, it can be proved that the solution error reduces as O(h) in
L1, Oðh2Þ in L1 and Oðh1:5Þ in L2, respectively [55]. For our flow–structure solver, the same principles apply, so
we expect convergence between O(h) and Oðh2Þ, as demonstrated in Section 4.1.2. An accurate prediction,
however, seems intractable. One important complexity stems from the moving interface. As expected, the anal-
ysis in [55] anticipates that the error is most significant at the fluid–solid interface, where it can be magnified
disproportionally since it is interpolated to update the interface location. Thus, the velocity error there will in
general be propagated to the whole system in a complicated way, mostly through the transfer of surface force
at the interface. The correction to the solid displacement by the solid incompressibility solver can also affect
the overall accuracy, which is also hard to analyze, but expected to be small since g is small.
0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

Fig. 15. Oscillating disk in fluid: energy variation. The lines show: — Ek (61), - - - Ep (62), and – �– Et (64).

Table 1
Oscillating disk in fluid: numerical energy dissipation at t ¼ 1:0

N s hs Nxð¼ NyÞ e (%)

20 0.079 512 4.8
80 0.040 512 0.47

169 0.027 512 0.28
330 0.020 512 0.31
705 0.013 512 0.22

1304 0.010 512 0.15
1304 0.010 64 0.86
1304 0.010 96 0.97
1304 0.010 128 0.31
1304 0.010 192 0.15
1304 0.010 256 0.17
1304 0.010 384 0.17
1304 0.010 512 0.15

0 0.2 0.4 0.6 0.8 100.2

0.40.60.81

0

00 . 2 0 . 4 0 . 6 0 . 8 1

0
0

0.2

0.4

0.6

0.8

1

0
0

0.20.40.60.8
1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1t= 4

.

Fig. 161 Lid-driven cavity: streamlines and deformation of the disk with

ls¼

0

4.2. More numerical examples

4.2.1. A deformable disk in a lid-driven cavity

A lid-driven cavity is a common benchmark problem for Navier–Stokes solvers [13,26,29]. Here, our
method is applied to simulate the motion of a neutrally buoyant deformable disk in a ½0; 1� � ½0; 1� lid-driven
cavity. Initially, a round stress-free disk of radius 0.2 is centered at (0.6,0.5), then at t ¼ 0 the top cavity wall
starts moving horizontally at U ¼ 1. The viscosity is lf ¼ 10�2; two cases are simulated with ls ¼ 0:1 and 10,
respectively.

The flow field and the solid deformation are visualized in Figs. 16 and 17. For the case where ls ¼ 10, the
solid motion appears nearly rigid, due to the relatively weak hydrodynamic traction. However, even for this
stiffer solid case, the solid disk deforms as it approaches the top lid, where its closest approach is only 0.02 as
shown in Fig. 18. The disk deformation is asymmetric about the disk’s vertical centerline, and lubrication
forces prevent the disk from touching the lid. The disk deformation is more obvious for the ls ¼ 0:1 case.
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 . 2 0 . 4 0 . 6 0 . 8 10.2 0.4 0.6 0.8 10.2 0.4 0.6 0.8 1

69

t= 5

.

86

t= 7

.

03

t= 8

.20

:

1.3134

H. Zhao et al./Journal of Computational Physics 227 (2008) 3114–3140

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 17. Lid-driven cavity: streamlines and deformation of the disk with ls ¼ 10.

0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.85

0.9

0.95

1

Fig. 18. Lid-driven cavity: details of the velocity field for the ls ¼ 10 disk.

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3135
In both cases, the solid body ends up in a fixed position near the center of the cavity, and the velocity field
becomes steady.

The narrow gap between the disk and the top cavity wall must be properly resolved by the Cartesian mesh,
or else the support of the distributed surface force would expand through the wall beyond the domain. For the
force-projection method (36), this requires at least two Cartesian mesh cells within the gap, which is always the
case for the 128� 128 Cartesian mesh used.

4.2.2. A thin leaflet in an oscillating channel flow

In this example, we simulate a thin elastic leaflet in an oscillating channel flow with setup similar to that in
[54]. The channel has length L ¼ 4 and half-height H ¼ 1 with a symmetry condition at y ¼ H ,
ou
oy
¼ 0; v ¼ 0: ð65Þ
The oscillations are driven by Dirichlet boundary conditions on the velocity at the inflow boundary, whose
side alternates according to the sign of UmaxðtÞ ¼ sinð2ptÞ,
uinðy; tÞ ¼ U maxðtÞ
y
H

2� y
H

� 	
;

vinðy; tÞ ¼ 0:
At the outflow boundary, a simple convective boundary condition [39]] is applied:
ou

ot
þ U adv

ou

ox
¼ 0; ð66Þ
where U adv is an advection velocity and is taken to be the average inflow velocity:

-1
0

0.2

0.4

0.6

0.8

1

-

1

-

0

5

0

0

5

1

00

.

2

0

.

4

0

.

6

0

.

8

1

-1 -0.5 0 0.5 100.20.40.60.81
Fig. 19. Flexible leaflet in a channel: streamlines and deformation of the leaflet.3136H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
U advðtÞ ¼
1

H

Z H

0

uinðy; tÞdy ¼ 2

3
U maxðtÞ: ð67Þ
Numerically, uoutðy; tÞ is evolved in time by integrating (66) with the same Runge–Kutta scheme as that em-
ployed in the Navier–Stokes solver; the normal derivative ou=ox is computed by one-sided finite difference.
The computed uoutðy; tÞ is supplemented by a correction velocity Du in x-direction to balance the mass flux
at the inflow and outflow boundaries. The leaflet has dimension 0:02� 0:8, and its bottom is fixed at the center
of the channel wall. The viscosity and the leaflet’s elastic constant are lf ¼ 10�2 and ls ¼ 102, respectively.

The channel is discretized by a uniform 512� 128 Cartesian mesh, and the leaflet is discretized by a uniform
2� 40 quadratic quadrilateral mesh. The time step is Dt ¼ 0:25h. The flow field and the leaflet motion are visu-
alized in Fig. 19.

4.2.3. Swimming of a two-dimensional jellyfish

A jellyfish moves itself in water by alternately contracting and relaxing a ring of muscle near its outer edge
[5]. The body of the jellyfish is soft, with a density close to water, so our method is well suited to this system. In
this simulation, its geometry is modeled as a two-dimensional viscoelastic body, with the density and viscosity
matching that of the surrounding fluid. The top and bottom surfaces of the jellyfish are parametric curves of
the form
xðsÞ ¼ ðcs; b� aðcsÞ2 � gðcsÞ4Þ; s 2 ½�1; 1�; ð68Þ

with
a ¼ 0:03; b ¼ 1:0; c ¼ 2:6; g ¼ 0:05 ð69Þ

for the top and
a ¼ 0:02; b ¼ 0:2006; c ¼ 2:45; g ¼ 0:045 ð70Þ

for the bottom. The two curves are connected by tangent circular arcs at their ends. Fig. 20 shows the unde-
formed solid Lagrangian mesh.

The contracting force that drives the motion of the jellyfish is modeled as an external body force be, which is
periodic in time with period T ¼ 50, and acts only near the two tips of the jellyfish body. Since in reality the
contracting force is generated by the imbalance of the internal stresses within the jellyfish body, it must sum to
zero. To enforce this constraint, the body force be is constructed such that it has the same magnitude but oppo-
site directions at any two points symmetric about the centerline. For that, we label pairs of symmetric points
as 1 and 2 as shown in Fig. 20. At the stress-free reference state, the distance between point 1 and the left tip
Xtip is
r ¼ jX1 � Xtipj ð71Þ

and be is defined such that it is non-zero only for r < 2. In one time period, say 0 6 t 6 T , be is computed as
beðx1; tÞ ¼
10ð2� rÞ 1� t

3

� �
x21

jx21j
for r < 2 and t < 3;

0 otherwise;

(
ð72Þ

beðx2; tÞ ¼ �beðx1; tÞ; ð73Þ
-0.5 0 0.5 1

1 2

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

Fig. 20. A two-dimensional jellyfish.

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

where x21 ¼ x2 � x1 is the vector from 1 to 2 at time t.
The computational domain is periodic with �8 6 x; y 6 8 and is discretized by a 512� 512 Cartesian mesh.

The viscosity and the elastic constant are lf ¼ 10�2 and ls ¼ 5, respectively, and the time step is
Dt ¼ 1:56� 10�2. The velocity and the motion of the jellyfish are visualized in Fig. 21. During the contraction
phase, the two tips move toward each other horizontally, producing a pair of counter-rotating vortices and
pushing the jellyfish upward. The relaxation of the jellyfish body at a later time introduces another pair of
vortexes that bring the surrounding fluid toward the bottom of the jellyfish body as it relaxes.

5. Conclusions and discussion

We have developed a fixed-mesh method to simulate flow–structure interaction systems with low elastic
modulus. A single combined momentum equation is formulated to describe the coupled motion of the system,

3138 H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
which is in essence a Navier–Stokes equation supplemented by body and surface forces, which represent the
flow–structure interactions. The whole velocity field is obtained by solving the momentum equation on a fixed
staggered Cartesian mesh. The computational scheme is made efficient by avoiding mesh movement and
regeneration and by using fast Cartesian-mesh finite-difference methods.

The transferring of solid elastic forces to the Cartesian mesh is a critical step in our method. We have con-
sidered three possible approaches: an immersed-boundary, an immersed-interface, and a new force-projection
method. The immersed-boundary and force-projection methods are relatively easier to implement, and the
force-projection method exactly conserves linear momentum. The immersed-interface method, on the other
hand, can potentially achieve higher-order accuracy and can capture sharp jumps in pressure and velocity
gradient.

By numerical tests, we show that the transfer of the elastic force from the Lagrangian mesh to the under-
lying Cartesian mesh is the most significant factor in reducing the numerical accuracy. In the absence of the
fluid–solid interface, the calculated velocity and solid displacement are third-order accurate with respect to the
Lagrangian mesh element size, and second-order accurate with respect to the Cartesian mesh spacing. When
the fluid–solid interface exists, the order of accuracy decreases, with the convergence rate between second and
third order with the solid Lagrangian mesh element size, and between first and second order with the Cartesian
mesh spacing. The discrepancy between L1 and L1;2 error norms are more significant in this case, indicating
localization of errors. For fluid flow with high Reynolds number, thin boundary layers typically develop at the
fluid–solid interface, so adaptive mesh refinement would help to improve the accuracy of our scheme
[1,2,14,43].

The explicit Lagrangian mesh movement makes our scheme efficient, but also limits the maximum time step
for stable time integration. When neglecting convection, the time step limit is inversely proportional to

ffiffiffiffiffi
ls

p
, so

this explicit mesh movement is best suited for soft solid. For stiff solid, an implicit mesh movement might be
preferable in order to have reasonable time step. In the immersed-boundary methods for membrane flows,
implicit membrane movement has been used [35,44], where the determination of membrane positions at the
next time step is formulated as a fixed-point problem and solved iteratively. Because of the similarity between
our system and the membrane flow system, similar approaches should be possible.

To extend our scheme to three dimensions, the major challenge comes from the transferring of the elastic
forces to the Cartesian mesh. This would be the easiest for the immersed-boundary method, which only
involves pointwise interpolations and surface integrations. For the projection method, the common refine-
ment in three dimensions is between linear tetrahedrons and the Cartesian mesh. The task of finding the
vertices where straight segments intersect (Fig. 4(a)) is now replaced by the task of finding edges where
planes intersect, but this is straightforward since no subsequent reconstruction is required. The algorithm
will be more complicated compared to the two-dimensional case, but no fundamental difficulties are
expected since all geometries involved are still straight-edged and convex. The integrand in (36) will be
piecewise cubic. By applying Green’s theorem twice, it can be converted to an integral of a fifth-order poly-
nomial along the polyhedral edges, and be computed exactly by a three-point quadrature rule. Recently
reported three-dimensional generalized quadrature rules [18] and re-tessellation [38] could also be used
for these integrations, although they are designed for the more general problems and would be less efficient
here. The immersed-interface method depends on the jump conditions, which have a very complicated form
even for the simple membrane flow system [53]. Since the jump conditions involves derivatives along the
interface, it demands a more sophisticated representation of the interface geometry, which introduces con-
siderable complexity in three dimensions. The extension of the immersed-interface approach is thus expected
to be most challenging.

For simplicity, we have assumed that the solid and fluid have the same density and viscosity. For mis-
matched densities and/or viscosities, the discontinuities can be mollified as has been done successfully for mul-
tiphase flow [3]. For example, a continuous density can be computed as
qðxÞ ¼ qsv
h
s ðxÞ þ qfð1� vh

s ðxÞÞ; ð74Þ

where vh

s is a mollified characteristic function for Xs that can be defined as
vh
s ¼ vs 	 dh; ð75Þ

H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140 3139
where dh is a smooth kernel function. The function vh
s changes continuously from 1 in Xs to 0 in Xf within a

narrow band around the interface. Our current method can then be adopted unchanged provided a variable
density and viscosity Navier–Stokes solver is used. More complex viscoelastic properties can be included by
including appropriate constitutive models in (8), which can be done with little change to the overall structure
of the solver.
Acknowledgments

We gratefully acknowledge the support from DOE via the Center for Simulation of Advanced Rockets at
the University of Illinois at Urbana-Champaign.

References

[1] G. Agresar, J.J. Linderman, G. Tryggvason, K.G. Powell, An adaptive, Cartesian, front-tracking method for the motion, deformation
and adhesion of circulating cells, J. Comput. Phys. 143 (2) (1998) 346–380.

[2] S. Bayyuk, K.G. Powell, B. van Leer, A simulation technique for 2-D unsteady inviscid flows around arbitrary moving and deforming
bodies of arbitrary geometry, in: AIAA 11th Computational Fluid Dynamics Conference, Orlando, Florida, July 6–9 1993, pp. 1013–
1024.

[3] Y.C. Chang, T.Y. Hou, B. Merriman, S. Osher, A level set formulation of Eulerian interface capturing methods for incompressible
fluid flows, J. Comput. Phys. 124 (2) (1996) 449–464.

[4] J. Cummings, M. Aivazis, R. Samtaney, R. Radovitzky, S. Mauch, D. Meiron, A virtual test facility for the simulation of dynamic
response in materials, J. Supercomput. 23 (2002) 39–59.

[5] J.O. Dabiri, S.P. Colon, J.H. Costello, M. Charib, Flow patterns generated by oblate medusan jellyfish: field measurements and
laboratory analysis, J. Exp. Biol. 208 (2005) 1257–1265.

[6] G. Dasgupta, Integration within polygonal finite elements, J. Aerospace Eng. 9 (2003).
[7] R. Deiterding, R. Radovitzky, S.P. Mauch, L. Noels, J.C. Cummings, D.I. Meiron, A virtual test facility for the efficient simulation of

solid material response under strong shock and detonation wave loading, Eng. Comput. 22 (2006) 325–347.
[8] T. Dunne, An Eulerian approach to fluid–structure interaction and goal-oriented mesh adaptation, Int. J. Numer. Methods Fluids 51

(2006) 1017–1039.
[9] L.J. Fauci, C.S. Peskin, A computational model of aquatic animal locomotion, J. Comput. Phys. 77 (1) (1988) 85–108.

[10] J.B. Freund, Leukocyte margination in a model microvessel, Phys. Fluids 19 (2007) 023301.
[11] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows,

Int. J. Multiphase Flow 25 (1999) 755–794.
[12] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Périaux, A fictitious domain approach to the direct numerical simulation of

incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys. 169 (2001) 363–426.
[13] K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, J. Comput.

Phys. 30 (1979) 76–95.
[14] J.A. Greenough, V. Beckner, R.B. Pember, W.Y. Crutchfield, J.B. Bell, P. Colella, An adaptive multifluid interface-capturing method

for compressible flow in complex geometries, in: AIAA 26th Computational Fluid Dynamics Conference, San Diego, California,
1995.

[15] W. Hackbusch, Coupled problems in microsystem technology, in: W. Hackbusch (Ed.), Numerical Treatment of Coupled Systems,
Proceedings of the 11th GAMM-Seminar Kiel, January 20–22, 1995, Notes on Numerical Fluid Mechanics, Vieweg, Wiesbaden
Braunschweig, 1995.

[16] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids
8 (12) (1965) 2182–2189.

[17] C.W. Hirt, A.A. Amsden, J.L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys. 14
(3) (1974) 227–253.

[18] D.J. Holdych, D. Noble, R.B. Secor, Quadrature rules for triangular and tetrahedral elements with generalized functions, Int. J.
Numer. Methods Eng., in press, doi:10.1002/nme.2123.

[19] H.H. Hu, D.D. Joseph, M.J. Crochet, Direct simulation of fluid particle motions, Theor. Comp. Fluid Dyn. 3 (5) (1992) 285–306.
[20] H.H. Hu, N.A. Patankar, M.Y. Zhu, Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian

technique, J. Comput. Phys. 169 (2) (2001) 427–462.
[21] T.J. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, 1987.
[22] R.K. Jaiman, X. Jiao, P.H. Geubelle, E. Loth, Assessment of conservative load transfer for fluid–solid interface with non-matching

meshes, Int. J. Numer. Methods Eng. 64 (2005) 2014–2038.
[23] R.K. Jaiman, X. Jiao, P.H. Geubellec, E. Loth, Conservative load transfer along curved fluid–solid interface with non-matching

meshes, J. Comput. Phys. 218 (1) (2006) 372–397.
[24] X. Jiao, M.T. Heath, Common-refinement based data transfer between nonmatching meshes in multiphysics simulations, Int. J.

Numer. Methods Eng. 14 (6) (2004) 379–402.

http://dx.doi.org/10.1002/nme.2123

3140 H. Zhao et al. / Journal of Computational Physics 227 (2008) 3114–3140
[25] J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput.
Phys. 171 (1) (2001) 132–150.

[26] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier–Stokes equations, J. Comput. Phys. 59 (1985)
308–323.

[27] M. Lai, C.S. Peskin, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput.
Phys. 160 (2) (2000) 705–719.

[28] L. Lee, Immersed Interface Methods for Incompressible Flow with Moving Interfaces, Ph.D. Thesis, Department of Applied
Mathematics, University of Washington, 2002.

[29] L. Lee, R.J. LeVeque, An immersed interface method for incompressible Navier–Stokes equations, SIAM J. Sci. Comput. 25 (3)
(2003) 832–856.

[30] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM
J. Numer. Anal. 31 (4) (1994) 1019–1044.

[31] R.J. LeVeque, Z. Li, Immersed interface method for Stokes flow with elastic boundaries or surface tension, SIAM J. Numer. Anal. 18
(3) (1997) 709–735.

[32] Z. Li, Immersed interface methods for moving interface problems, Numer. Algorithms 14 (1997) 269–293.
[33] W.K. Liu, Y. Liu, D. Farrell, L. Zhang, X.S. Wang, Y. Fukui, N. Patankar, Y. Zhang, C. Bajaj, Immersed finite element method and

its applications to biological systems, Comput. Methods Appl. Mech. Eng. 195 (2006) 1722–1749.
[34] F. Losasso, F. Gibou, R. Fedkiw, Simulating water and smoke with an octree data structure, ACM TOG 23 (2004) 457–462.
[35] A.A. Mayao, C.S. Peskin, An implicit numerical method for fluid dynamics problems with immersed elastic boundaries, Contemp.

Math. 141 (1993) 261.
[36] P. McCorquodale, P. Colella, H.A. Johansen, Cartesian grid embedded boundary method for the heat equation on irregular domains,

J. Comput. Phys. 173 (2001) 620–635.
[37] R.C. McOwen, Partial Differential Equations: Methods and Equations, Prentice Hall, 1996.
[38] C.H. Min, F. Gibou, Geometric integration over irregular domains with application to level set methods, J. Comput. Phys. 226 (2)

(2007) 1432–1443.
[39] M.A. Olśhanskii, V.M. Staroverov, On simulation of outflow boundary conditions in finite difference calculations for incompressible

fluid, Int. J. Numer. Methods Fluids 33 (2000) 499–534.
[40] C.S. Peskin, Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10 (2) (1972) 252–271.
[41] C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (3) (1977) 220–252.
[42] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge,

1992.
[43] A.M. Roma, A Multilevel Self-adaptive Version of the Immersed Boundary Method, Ph.D. Thesis, Courant Institute of

Mathematical Sciences, New York University, 1996.
[44] A.M. Roma, C.S. Peskin, M.J. Berger, An adaptive version of the immersed boundary method, J. Comput. Phys. 153 (2) (1999) 509–

534.
[45] P.R. Spalart, R.D. Moser, M.M. Rogers, Spectral methods for the Navier–Stokes equations with one infinite and two periodic

directions, J. Comput. Phys. 96 (2) (1991) 297–324.
[46] D. Sulsky, J.U. Brackbill, A numerical method for suspension flow, J. Comput. Phys. 96 (2) (1991) 339–368.
[47] D. Sulsky, Z. Chen, H.L. Schreyer, A particle method for history-dependent materials, Comput. Methods Appl. Mech. Eng. 118

(1994) 179–196.
[48] K. Taira, T. Colonius, The immersed boundary method: a projection approach, J. Comput. Phys. 225 (2) (2007) 2118–2137.
[49] H.S. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp interface Cartesian grid method for simulating flows with

complex moving boundaries, J. Comput. Phys. 174 (1) (2001) 380.
[50] H.S. Udaykumar, L. Tran, D.M. Belk, K.J. Vanden, An Eulerian method for computation of multimaterial impact with ENO shock-

capturing and sharp interfaces, J. Comput. Phys. 186 (1) (2003) 136–177.
[51] R.W.C.P. Verstappen, A.E.P. Veldman, Symmetry-preserving discretization of turbulent flow, J. Comput. Phys. 187 (1) (2003) 343–

368.
[52] X. Wang, W.K. Liu, Extended immersed boundary method using FEM and RKPM, Comput. Methods Appl. Mech. Eng. 193 (2004)

1305–1321.
[53] S. Xu, Z.J. Wang, Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation,

SIAM J. Sci. Comput. 27 (6) (2006) 1948–1980.
[54] Z. Yu, A DLM/FD method for fluid/flexible-body interactions, J. Comput. Phys. 207 (2005) 1–27.
[55] H. Zhao, A Fixed-mesh Flow–Structure Solver for Biological Systems with Large Solid Deformations, Ph.D. Thesis, Department of

Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 2006.
[56] X. Zhong, A new higher-order immersed interface method for multi-phase flow simulation, AIAA Paper, 2006-1294, 2006.
[57] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates Part 1: The recovery technique, Int.

J. Numer. Methods Eng. 333 (7) (1992) 1331–1364.

	A fixed-mesh method for incompressible flow-structure systems with finite solid deformations
	Introduction
	Problem definition and methodology
	Numerical algorithm
	Eulerian-mesh momentum equation solver
	Computation of solid elastic stress
	Transfer of the elastic stress
	Immersed-boundary method
	Immersed-interface method
	Force-projection method
	Discussion on the three force-distribution approaches

	Solid tracking and the incompressibility constraint
	Time integration

	Numerical results
	Convergence
	A pure solid system
	The deformation of an elastic wall by flow
	An oscillating disk surrounded by fluid
	Discussion of errors due to surface force spreading

	More numerical examples
	A deformable disk in a lid-driven cavity
	A thin leaflet in an oscillating channel flow
	Swimming of a two-dimensional jellyfish

	Conclusions and discussion
	Acknowledgments
	References

